Large Annihilators in Cayley-dickson Algebras

نویسندگان

  • DANIEL K. BISS
  • DANIEL DUGGER
  • DANIEL C. ISAKSEN
چکیده

Cayley-Dickson algebras are non-associative R-algebras that generalize the well-known algebras R, C, H, and O. We study zero-divisors in these algebras. In particular, we show that the annihilator of any element of the 2n-dimensional Cayley-Dickson algebra has dimension at most 2n−4n+4. Moreover, every multiple of 4 between 0 and this upper bound occurs as the dimension of some annihilator. Although a complete description of zero-divisors seems to be out of reach, we can describe precisely the elements whose annihilators have dimension 2n − 4n + 4.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

. R A ] 4 F eb 2 00 7 LARGE ANNIHILATORS IN CAYLEY - DICKSON ALGEBRAS II

We establish many previously unknown properties of zero-divisors in Cayley-Dickson algebras. The basic approach is to use a certain splitting that simplifies computations surprisingly.

متن کامل

Large Annihilators in Cayley-dickson Algebras Ii

We establish many previously unknown properties of zero-divisors in Cayley-Dickson algebras. The basic approach is to use a certain splitting that simplifies computations surprisingly.

متن کامل

ar X iv : m at h / 07 02 07 5 v 2 [ m at h . R A ] 2 2 Fe b 20 07 LARGE ANNIHILATORS IN CAYLEY - DICKSON ALGEBRAS II

We establish many previously unknown properties of zero-divisors in Cayley-Dickson algebras. The basic approach is to use a certain splitting that simplifies computations surprisingly.

متن کامل

Constructing zero divisors in the higher dimensional Cayley-Dickson algebras

In this paper we give methods to construct zero divisors in the Cayley–Dickson algebras An=R 2 for n larger than 4. Also we relate the set of zero divisors with suitable Stiefel manifolds.

متن کامل

Identities for Algebras Obtained from the Cayley-dickson Process

The Cayley-Dickson process gives a recursive method of constructing a nonassociative algebra of dimension 2 for all n 0, beginning with any ring of scalars. The algebras in this sequence are known to be flexible quadratic algebras; it follows that they are noncommutative Jordan algebras: they satisfy the flexible identity in degree 3 and the Jordan identity in degree 4. For the integral sedenio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005